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A NEW LOOK AT MULTIPLE SCATTERING

i. The Standard Problem qf Multiple Scatterinq

We shall define the standard problem of multiple scattering by

the following set of assumptions, formulated in the conventional

language of astrophysics, For a more complete formulation and

comments we refer to the list of definitions in section 2.

- Homogeneous plane-parallel atmosphere or slab.

- Optical thickness b; optical depth _ runs from 0 to b.

- Albedo a independent of I-

- Phase function or scattering diagram _ (_) of individual

particles or volume elements (possibly to include

polarization specifications) is independent of T"

- Incident radiation having an arbitrary intensity

distribution with angle impinges on one side of the

atmosphere; we call this side top, the other side

bottom.

- No interdependence of the processes at different

wavelengths.

- No internal emission.

- No reflecting bottom surface.

- Steady state (independence of time) and plane waves

(independence of coordinates x, y, along the slab).



It is asked to determine the intensity and state of polarization of

light emerging under any angle at top (reflected} and at bottom

(transmitted).

The word "standard problem" has been occasionally used in this

sense but does not belong to the common jargon of astrophysics.

It is employed here for convenience and should not be held to imply

that the many variations from this problem are somehow less valid.

Some such variations ares time-dependent problems; inhomogeneous

or curved atmospheres; radiative transfer problems (in which the

events at different _ are interlocked by the occurrence of the

same temperature distribution).

This entire paper deals with the standard problem. In fact,

most of it deals with an even simpler problem, the standard problem

fo__/risotro ip__ scatterinq, defined by the additional assumption that

=

The solution of this problem is well known and its application

should present no problems. Yet, the numerical results required in

practical problems are still somewhat hard to find. One reason is

that most work on the subject contains such lengthy derivations that
!

the "user" has trouble in finding his way. Another reason ks that

numerical values for the basic functions X(_ ) and Y(_ ) and their

moments are available in a very limited number. Even when these are
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known, the further substitutions still pose nasty problems. For

example, in transmission when /_ =_o , the usual formula gives

0/0, and a differentiation of X_) and Y_ ) with respect to/

is required to find the answer.

The novelty of the present paper is that the relevant equations

are written in a new, extremely condensed, manner. This adds nothing

of substance but it was felt that the following advantages might

result,

(a) More results to a page and quicker reference.

(b) Suitable starting point for machine-programming.

(c) Possibility of following the physical meaning

throughout. This is very important because most

of the functions to be defined and tabulated have

reciprocal physical interpretations corresponding

to a reversal of the time direction.

(d) possibility for derivations which would otherwise

become too lengthy. For instance, the second

derivation of the formulae for the adding method

(section 9) would involve sextuple integrals if

written fully.

(e) An exercise toward the more elaborate programs

required when the scattering is anisotro_ic or

whon polarization is included.

-3-



2. Definitions of Physica ! Quantities and Som _ Comments

For readers in doubt about or unacquainted with the astro-

physical usage, but willing to accept definitions in physical rather

than mathematical terms, the following llst of definitions and

comments may serve to define the problem more clearly. Reference

may also be made to the books of Chandrasekhar (1950), Kourganoff

(1952) and others. Deviations from commonly accepted usage, Where

found desirable, have been pointed out specifically.

Radiation or liqht. These terms are used interchangeably.

They may refer to a small or wide wave length region, provided only

that the scattering properties (extinction coefficient, albedo,

scattering diagram) do not vary with wave length within this region.

The amount of radiation or light may be expressed in energetic or

luminous units as desired.

Scatter_n 9. The process whereby part of the radiation or light

arriving at a scattering particle suffers a change in direction,

possibly combined with a change in state of polarization, without a

change in wavelength. The scatterinq coeffiq!ent ksc a will be

defined as total scattering cross-section per unit volume, or

average cross-section of a particle times number of particles per

unit volume. The dimension is length -1. The quantity more

commonly used in astrophysics is the mass scattering coefficient, or

-4-



k_otal cross-section per unit mass, which is I/_ times as large,

_-here ? = density = mass per unit volume. Similarly for absorption
!

_X_nd extinction.

Absorption. The process whereby part of the radiation or light

-_rriving at a scattering particle or volume element is absorbed into

i_his particle or volume element and converted into heat. The

a_bsorption coefficient is kab s (length -1 ). The opposite process,

.%[_,ission, generally exists whenever absorption is present but will

"._ot be incorporated into our formulae because of one of two reasons:

I. In typical light scattering problems the emission can

be ignored because it occurs mostly at quite different

wave lengths in the far infrared.

2. In the "grey" radiative transfer problem, when we

consider total energy only, the absorption and subsequent

emission can be formally combined into one scattering

event with albedo i.

Extinction. Sum of scattering and absorption. Extinction

x_oefficient = kex t = kab s + ksc a = relative loss of intensity per

- nit path length from a rectilinear beam o_ light.

Albedo. Symbol a. The ratio of scattering coe,fficient to

_'_xtinction coefficient; we have

ksc a = a kex t

1

"5--



kab s = (I - a) kex t

The conventional symbol _ (curled pi, not omega) for albedo

is avoided because most users find it too exotic.

Optical path length. Integral between any two points A and B

of geometric path length times local extinction coefficient. No

separate symbol is required because the expression I( TA -TB_/_ J_

|

where _ - cosine of angle with normal, suffices.

O_tlcal depth. 0ptical path length measured perpendicularly

to the slab or atmosphere from a convenient zero point (usually

taken to be the top surface).

Homogeneous atmosphere. A plane-parallel atmosphere in which

a and _ (_) do not change with 2". A narrower definition would be

to require that each of the coefficients kext, ksc a, and kab s

are independent of the geometrical height in the atmosphere, but

these coefficients do not appear anywhere in the theory except in the

final conversion of optical depth into geometrical depth. H,nce the

wider definition, which applies pretty well to many practical

problems Concerning planetary atmospheres, is preferred.

Scatterinq anqle. Symbol c( . The angle between the direction

of propagation of the light arriving at a particle and the diroction

-6-



of propagation of the light scattered by it.

Scatterinq function or scatterlnq diaqram. Sp_bol _(_ ).

The function indicating how the radiation scattered by a single

particle or small volume element is distributed with the scattering

angle. We adopt the normalization

-l

and define the first moment as the _symmetry.factor

f

--i

In older books _ (_) would often be called the phase function

(term derived from'phases of the moon", "phases of the planets")

and the argument s_ould often be _-- _ . In modern work the term

forward scattering unambiguously refers to _ = 0 (or close to 0)

but in older work the words forward and backward were sometimes

used ambiguously.

In order to describe scattering of polarized light fully, it

is necessary to consider each intensity as a four-vector of the

four Stokes parameters and the scattering function _ (_) as a

4 x 4 matrix. For explicit formulae we refer to Chandrasekhar's

book.

-7-



Multiple scatter iLnq, The successive occurrence of scattering

processes by different particles under the assumption that radiation

or light arriving at a particle after having been scattered by another

one is affected in precisely the same manner as radiation or light

coming from a very distant source would be affected. This means that

typical vicinity effects are excluded, which is permissible in

virtually all applications.

Radiative transfeLr .. The successive occurrence of processes by

which not only the direction of the radiation is changed but in which

also radiative energy is being converted from one wave length to

another wave length. This is usually described as a process of

absorption and subsequent re-emission dependent on a locally

defined temperature Which is determined by the transfer process.

We do not consider radiative transfer problems in this paper, except

for the equations governing the total energy (integrated over all

wave lengths) in the"gray case" absorption coefficient independent

of wave length, which happen to be identical for those governing

the intensity in multiple scattering with albedo i and isotropic

scattering diagram .

Intensity. Amount of radiation flowing per unit time per

steradian per unit area perpendicular to the direction of propaga-

tion. This is the m_pecific intensity" conuuonly used in astro-
_7



physics. In the absence of extinction the intensity of radiation

emitted by an extended source equals the brlqhtness of that source.

It is independent of distance because the area of a beam increases

in the same proportion as the solid angle diminishes with increasing

distance. The words intensity and brightness can be translated

into appropriate standard terms when the system of units has been

chosen, but the general definitions suffice for the present paper.

Lambert surface. Surface (of a solid body or other object)

which has equal brightness in all directions in the hemisphere

from which it can be seen.

Flux or net flux. Amount of radiation flowing per unit time

through a unit area parallel to the top or bottom surface of the

atmosphere. This definition corresponds with standard usage, but

it should be noted that also by standard usage the flux is represented

by the product 7YF, so that F = 7r x flux. The reason for this

convention is that F = i, flux = _, for a Lambert surface with

intensity 1. In colloquial astrophysica F is often called th e

flux; this is veryccnfusing and we shall try to avoid this

colloquialism. If _ is the (positive) cosine of the angle

between the direction of propagation and the normal, then

-I
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• Aver aqe intensity. Symbol I. Intensity averaged over the

total solid angle 2TF of a hemisphere without weighting factor.

f

This concept is useful only for the emergent radiation at top or

bottom of the slab. Like F it is an average, or m_nent, of the

emerging intensity distribution, but it gives relatively more

weight to the grazing directions than F.

Source function. Symbol J. Amount of radiation or light

scattered per unit solid angle from a volume element containing

particles with unit total extinction cross-section. This

definition is equivalent to saying that the intensity of

scattered radiation emerging from a box with surface area d_--

and optical thickness d_ normal to d6" is J dO- d_ (Figure I).

d6-
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J has the dimension of intensity and is independent of direction

if the particle scattering is isotropic. However, the definition

can be applied also to anisotropic scattering, in which case j

depends not only on the position in the medium but also on

direction. If polarlzation is taken into account, J is a 4-vector.

For isotropic scattering

_ad!atign densitT. Amount of radiative energy per unit volume.

If energy units are used to express the intensity, the radiation

density involves the same integral as the source function (for

isotropic scattering) but the factor is different. Let c be the

velocity of light then,

Radiation density = Icr9
C_

The units could bez

I in erg sec -I cm -2 sterad -I, J and radiation density

in erg cm -3, c = 3.00 x I0 I0 cm sec -I

or

I in watt m "2 sterad -I, J and radiation density in

Joule m-3, c = 3.00 x 108 m sec "I.

-11-



Please note that the integration of_ over two hemispheres, which

occurs in the definitions of F_), J(_, and the radiation density

cannot be expressed in the condensed matrix notation which we shall

employ in subsequent sections of this paper.

• Reflection function. This function R(_,_) is more completely

called the diffuse reflection function. It is defined as the intensity

reflected in direction_ When radiation with flux 7F (F = i) is

incident from direction _, Here _0 and_ are the cosines of

the angles of the direction of incidence and reflection with the

normal, taken with positive sign.

Some comments are necessary. First, if the incident radiation

comes from a small solid angle, say the Sun's disk with _--

0.86 x 10 -4 steradian, then the average specific intensity incident

from directions within this solid angle must be taken as

Iin = /__ in order to obtain incident flux 7F (Fin = i,

see definition above). Hence, the reflected intensity caused by

arbitrary incident intensity confined within that solid angle ks

Secondly, this reflection function is related to Chandrasekhar's

 nctionS by
/ '/

-12-



Both functions are symmetric.

arbitrary incident radiation

= d_ i "4

The reflection formula for

S&o.r)

i

employed by Chandrasekhar (R. T. page 21, Eq. 122 with minor

changes in notation} can be made fully symmetric in two equivalent

ways

" _ -_i] i - 0

0

i

F°

R&o,,j ,°9°

We have selected form (B) because the intensities themselves

appear and because R( _,jp ) assumes finite non-zero values for

=0 orpo = 0, Cbu_i_b_o_o__ _or/o --/_- _J.

Transmission functio n . The function T(/_ i _p ) is more

completely called the diffuse an._d direct transmission function.

It is defined as the intensity emerging in direction_ from the

-13-



bottom of a p!ane-parallel atmosphere when radiation with flux

(F = i) is incident on the top from direction _o. Here

and_ are again positive cosines of the angles with the normal.

Included in this definition is the direct radiation, i.e., the part

of the incident radiation which emerges at the bottom without

scattering. This is convenient, first because the formulae are

simpler that way and, secondly, because in many experimental

conditions the direct and scattered radiation are indistinguishable.

3, The Milne Equation

Sections 3 to 5 refer only to the case of isotropic

We repeat the main notations.

b = total optical depth of layer

Ja = albedo of particles

_- or I"

regarded constant

I
= optical depth from top surface

_0 = positive cosine of angle of incidence measured

from normal

= positive cosine of angle of emergence at top or

bottom surface, measured from normal

scattering

"top" = side from which incident radiation comes

"bottom" = the other side

-14-
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and

namely

I

i

The preceding definitions make clear that the source function

the intensity I(_)_ ) are expressible in terms of each other,

J in terms of I by an integration over directions (_)

I in terms of J by an integration over depth (_)

From here we can choose to eliminate J, obtaining one equation,

the e_lation of transfer, for I. Alternatively we can choose to

eliminate I, obtaining one equation, the _6__.___e___tlon, for J.

We choose the second alternative, which is distinctly simpler

because (only for isotroplc scattering_) a function of one variable

instead of two is involved. This means that inside the atmosphere

we consider functions of _Y only and at top and bottom we consider

functions of/_ only. Incidentally this relieves us from the

always somewhat clumsy notations to distinguish between intensity

up or down. As it is, we can take_ alwBys positive corresponding

to the cosine of the angle with the out%_rd normal, the term

"outwBrd" being unambiguous at top or bottom but not at any

intermediate point.

Let the incident radiation have the intensity Iin(/a_),

independent of the azimuth angle _ . If this assumption is not

made, one further (trivial) integration over _ is involved.

-15-



The emergent intensities Iout (_) must then be found from the

following set of equations s

o

These are familiar equations in an unfamiliar setting, because

of the assumption of a diffuse incident radiation field. The

main problem, of course, is solving for J(l') from the first

integral equation, which is the Milne equation. The kernel

-contains the exponential integral

/E I(y) = e Y_ a._.z_

"1

The flux can be similarly expressed. Writing the downward

net flux as 7FF(T) we obtain

F {r) -_ _ Z,._[i,o]_ /,o@2o + {z-r'] 7[rO _/F'--

(3) o o

•-'z/E_ (_"'-z) I{r9xr'

•- -16-



where

_1 _-

As a check we differentiate equation (3) and find

It is easily verified from the definitions that upon multiplication

by _ d_ we have _eft and right the amount of radiation absorbed

in a volume element with area 1 and thickness d_ at depth T-.

4. Matrix Notation

,-o

The preceding equations and the various solution methods

which, follow contain integrations of only two types:

integration over _ or ?t from 0 to b

integration over /_ or _o from 0 to 1

We now introduce a condensed notation in which these integrations

appear as matrix products.

a/_ -vector or a _-vector.

A function of one variable will be called

A function of two variables will be

called a _-matrix. a _--matrix. a _ -matrix or a Y_--matrix.

The order has to be strictly observed. Multiplication of two matrices

or a matrix and a vector, or two vectors is a short notation for

-17-



integration over the adjoining arguments, which should be both _C"

or both/_ . We adopt the definitions|

l'-multiplication _ _ = /_F_r] _ [r_ _T"

?,-multiplication F'_' =, F'_//4J _'_/_..) 2l

o

where F(T), G(T ), F' (_), G' (_) are arbitrary functi?ns.

These multiplications obey all rules of matrix multiplication,

in particular the associative property. The factor 2_ in the

definition of the_ -multiplication is necessary in order to make

the matrices symmetric (compare the remarks made on R(_o,/u ) in

section 2). Not a single transformation or approximation is made

at this stage. We go on working with continuous variables and

have changed only the notation. Evidently, actual matrices with

a finite set of numbers may be employed in machine computations,

but we are not yet concerned with the technique for doing so or

with the accuracy lost in that process.

The curious fact about this notation is that it seems t_oo

I

economic, for the notation does not tell whether a function of/_

or_o is meant or whether the argument is Z" or _ I . This will

always be clear from the context, i.e., from thephysical meaning

-18-



of the expression. Nor do the f_ and _F-matrices specify in

what order the arguments are to taken, for instance, in the order

( /_0_0 ) or (_0,_)" This will always be irrelevant because

of symmetry. These curious properties are manifestations of the

reciprocity principle, which generally expresses the possibility of

inverting the time order of events. Several consequences are

mentioned explicitly in further sections.

A formal distinction between the two matrices representing

the function

is necessary in this notation but ceases to be visible when the

integrations are written out. P is the transposed matrix of P.

Similarly, _ is the transposed matrix of Q. All square matrices

( TT or _ -matrices) which occur in our formulae are symmetric,

i.e., their own transpose.

Here follows the list of the vectors and matrices which we

shall use.

/_ -vectors
I

0

lin(_o) = incident intensity

Iout( _ ) = emergent intensity

-19-



/_ -vectors
(contd)

D

U

N

Z

(2_}-I

1

I

operator defined by Z _ =

arbitrary

x angular detector response

_(0),

T -vectors

_/ -matrices

J

S

%

W

A

B

E

G

1

J(%_} = total source function

aJ I (r) = first order source function

Jp(T) = p-th order source function

for a = 1 (pm i, 2, 3, ...}

1

operator defined by A_ = _(0),

arbitrary

operator defined by B_ = _(4 ),

arbitrary

2z2(_ )

tl_,_o> diagonalmatrix,

operator converting only the

argument/_ o into /_, or conversely.

-20-
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j _ • .... .

_ -matrice s
(contd)

Symbol

T O

R

T

:Funct ion

2/_ £ diagonal matrix.

operator converting a function of

._o into the same function of/_

multiplied by e

reflection function R {/_o,/_)

transmission function T (_0,_

.J

_ -matrices 1

M

C

;{T, T'), diagonal matrix, operator

converting only the argument T

_" , or conversely

%E4( IT- r'I) = Milne operator.

This operator is commonly known as

the _-operator.

(I - aM) -I = the complete redistri-

Jinto

bution function

_T -matricgs, Symbgl

P

"_' A""," '''_ L -" " "_ '" "_ 'S," :-: .'_ t. Q

Function

I.- £

-21-
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Several singular functions occur in this tabulation. They

•i are all common delta-functions and obviously indispensable in this

type of calculus. Their meaning may be described in two ways.

.... (a) As an operator, i.e., by stating that matrix

.... _ multiplication with this function is an order to

replace one variable by another variable, or by a

specific number, as specified.

(b) As a continuous function which has large non-zero

values only in a very narrow range of values of the

independent variable and which, upon integration by

the general definition of matrix multiplication,

yields the specified result in the limit in which

this interval shrinks to O.

The definition (b) is a little more cumbersome but corresponds

to actual situations, e.g., illumination by the Sun, which is not

a point source, or observation by means of a telescope with

//mired resolving power directed at the limb of a planet's disk.

In these situations the angular integration interval is small

/_ut not strictly zero.

Several relations between these singular matrices may be

noted. They are trivial, mathematically, but a loose description

................ol t_eiz physical meaning may have some interest.

-22-



First,
PZ = ZP = A

OZ=ZQ=B

Verification proceeds by multiplying with an arbitrary _-vector

S and writing the integrals out, for instance, ZPS = Z(PS) =

S(0) = AS. The descriptive value of these relations is: "light

incident under a grazing angle penetrates (without scattering)

only into the topmost layers of the atmosphere", or reciprocally,

"viewing an atmosphere under grazing angles we observe only the

topmost layers."

quite similar.

Secondly,

The interpretation of the second relation is

2A_ = 2_A - NP - PN - E I (r)

u

2BM = 2MB = NQ = QN = E 4 (b - lr )

The verification is straightforward. The descriptive meaning of

the top relation is that radiation from a narrow layer of

Isotropic sources on top of the atmosphere(N)is first scattered

(5) in different layers distribu£ed as the Milne distribution function

(M), measured from the top down (A). Reciprocally, a radiation

detector with isotropic sensitivity characteristic (N) held at

the top of the atmosphere will record the radiation from various

-23- •
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(M), measured from the top down (A).

bottom relation is entirely similar.

Thirdly, some related products are

2_4A = 2WMB = 2AMW = 2BMW = 1 -

2AMB = 2B_A = R_(b)

2UM = 2MU = 2 - E2 (r) - z2

2AMA and 2EMB diverge

layers (P) weighted according to the Milne distribution function

The interpretation of the

0_-r)

5. Internal Relations

It is possible to avoid in an elegant manner any detailed

discussion of what happens to the radiation inside the layer and

to concentrate on the equations governing the external radiation

field (external relations, see 6). Although this method has been

brought to prominence by Chandrasekhar, we feel that logical

priority should be given to a method in which we follow "what

happens to the radiation" when it gets inside and how it gets

out again. This we shall do in the present section. Of course,

none of this is new. Only the presentation may be more concise
t

and, we hope, more transparent than in most textbooks.

The following derivation will be confined to isotropic

-24-



scattering, _ (_} = i.

The events in a logical order, arez

First Event: The radiation incident from the top, I, which has

an arbitrarily given intensity distribution with angle,

penetrates into the layer and is scattered at various

depths, thus establishing the original (first-order)

source function

S= _PI

The factor ¼ appears when the integral is written down fully

employing the definitions given in Section 2. Essentially

it is due to the fact that the flux has a factor _ but

that scattering occurs into 4_ steradians.

_econd Event: The radiation forthcoming from the source

distribution S is scattered again and again, thus

establishing a complete source function, which includes

S and all higher orders and is written as

J = CS

Third Event: Radiation from this source function at various

depths reaches the top surface under various angles and gets

out, giving the emerging intensity

Oto p = PJ

-25-
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Similarly_ the radiation from these sources emerging at

the bottom is QJ but in addition, some of the original

incident radiation shines through without any scattering,

giving at the bottom the intensity ToI. The combined

emerging radiation intensity is

Obottom = ToI + QJ

The same equations, written fully with integrals, were given

as Equations 2 in Section 3.

Fourth Event: If a detector is used to measure the emerging

radiation (at top or bottom) sampling the different angles

with a certain weighting factor described by D, the

detector reading is a number

d =DO

The combined result of these successive matrix multiplications

thus assumes the form of a reflection function R and a transmission

function T operating on I.

Otop = RI = PC%a  

Obottom = TI = ToI + QC_4aPI

So that we have the equations

-26-



R = PC¼aP

T = T O + OC_aY ,

which may be taken as the definitions of R and T in ma_themati_ca!

term___s. Granting the symmetry of C (see below) it is readily seen

that both R and T are symmetric matrices.

The corresponding detector readings can be written as

dto P = DRI = DP C¼a_I

J

dbottom = DTI = DToI + DQ C¼aPI

In these equations D occupies a position symmetric to I

and DP (or DQ) a position symmetric to PI. These formulae may,

therefore, be turned around and may be given a different

(reciprocal) interpretation in which I refers to the detector

characteristic, D to the incident intensity distribution.

Particular choices for D and I and their reciprocal interpretations

will be discussed in the next section. The advantages of the

matrix notation are that these symmetries appear quite naturally

and that the choice of the order of computation may obviously be

decided on the basis of convenience only. For instance, dtop

may be computed from

dto p = D(PC¼aP)I = DRI
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or from

dto p (DP) C (¼aPI)

whichever seems more convenient An a particular application.

The determination of C forms the core of the multiple

scattering problem. This subject is important enough to describe

two separate ways of deriving the equations.

First, if we refuse to recognize any hierarchy of first,

second and higher-order scattering, we must reason as follows.

The local intensity at any depth q- and hence the local source

function J comes partly from incident radiation which has penetrated

to that depth (this part we have called S) and partly from radiation

scattered by the atmosphere, which itself depends on J at all other

depths T l . This is expressed by the matrix equation (fully

written as Equation 1 in Section 3)

J=S+aMJ

Consequently,

and

S = (i - aM) J

J=CS, c = (1 - -I

In the second derivation we consider that radiation from

outside gives S, the first-order part of the source function.

\\
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One subsequent scattering gives second-order sources distributed

as aMS. The third order requires again multiplication by aM.

Hence the total sum is

where

J = S + aMS + a2M2S + ... = CS

C = 1 +aM + a2M 2 + .., = (i - aM) -I

Both derivations are fully equivalent. The second one suggests

at once a method for numerical computation of C, more details

about which are given in Section 8. This isby no means the only

one possible.

It may be noted that zero-order sources, i.e., isotropically

emitting sources of radiation embedded within the atmosphere with

an arbitrary distribution So(T) can be easily incorporated. The

only change is that S should be replaced by S + SO .

6. External Relations

External relations are those in which no functions of T

_occur . Several authors, most completely Chandrasekhar, have

shown that these external relations can be derived by means of

• invariance principles without ever going through the calculation

of the internal intensity or source function. This can be done

r



for an arbitrary scattering diagram of the single particles. The

external relations then involve /G o ,_ and the azimuth angles

_o and _ . The relations are simplest for isotropic scattering,

in which case only _0 and/_ are involved and the results can be

expressed in terms of two functionc X(_} and Y(_ } and their moments.

However, before we come to these results, we wish to summarize

the more general relations which can be written down without

specifying the precise form of the deflection and transmission

function of R and T. Any measurement of the emerging radiation

at the illuminated side of the slab (top), or at the other side

(bottom), has the form of a "detector reading"

d = DRZ (top)

or

d = DTI (bottom)

These expressions are the product of a_-vector, a _-matrix

and a _-vector and thus form external relations. If we avoid

specifying the form of R, these relations have a far more general

applicability than those in which R and T are specified by the

formulae derived in the preceding section. For instance, they may

refer to an inhomogeneous slab in which the albedo depends on

depth. They hold similarly if the scattering diagram is

anisotropic, perhaps even varying with depth, and the incident

-3O-



radiation (and hence also the emergent radiation) is independent

of azimuth. Obvious extensions to include the azimuth dependence

might be made but we shall not do this. Hence we work with the

reflection and transmission functions R = R (_ ,_o ) and T = T(_,_o

and for the moment it suffices that we postulate their symmetry

on the basis of the reciprocity principle.

We may choose for I either an operator stating that we have

to take a particular value Of/o , which corresponds to a plane

wave incident under one angle. Or, we may choose for I a function

representing the incidence of light from a range of different

directions. Similarly, we may choose to specify D in such a manner

that we measure radiation emerging under a specific angle (the

cosine of which is_ ) or we may take it to be a non-singular

function so that we measure an integral of the emergent light with

a well-defined weighting function for the angles. We have avoided

the introduction of separate symbols for the vector-operators

specifying a particular angle ( _o or_ ), for they do not

involve a separate step in the computation, once the function to

which they are applied has been tabulated. Only the specification

that _o or _ is 0 (grazing angles) has been introduced as the

vector Z.

Functions I and D specifying integrals can, of course, be

-31-
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chosen in infinite variety. For mathematical and physical reasons

we choose two simple ones, N and If to be applied as a matter of

routine in all tabulations alongside the values of the functions

R and T for chosen values of _d and_ . This is thought to be

an improvement in convenience with respect to older papers where

these integrals, if given at all, often are at quite different

places from the function values.

The following integrals over the emergent radiation 0 are

obtained=

NO

UO =

i
f

jo O_)d_ = average intensity

/ O_)_ d_ = emerging flux /_T

O

Multiplication by N and U thus defines the zero and first moment,

normalized in such a manner that an equal-intensity distribution

O = 1 gives NO = 1 and UO = i. They can also be regarded as

differently wieghted averages of O in the domain, /_ = 0 to i,

on which 0 is defined. The physical meaning of NO is c/2

times the radiation density of the emerging radiation, as

defined in Section 2.

In the reciprocal formulae N or U specify the distribution of

incident radiation I and the physical interpretation is different.

• • , " .. _ _, _ _..._.:.
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I F N _ I/(2_) moans that the radiation intensity increases as

i/_ towards the grazing angles. This is the intensity distribution

that would be forthcomin 9 from a narrow layer of isotropically

o_it_ing sources, The incident flux is 77" . The formula

- U _ I means that the radiation is independent of direction.

T_i_ occurs, e°go, An the _mission by a black body, or in the

l_ht diffusely reflected from an ideal Mite surfacel the classical

term for this distribution is Lambert's law. The incident flux

n

is again 7P .

In Tables 1 to 4 we summarize the various combinations to

which these choices for D and I lead. The values or functional

forms for the simple products are written in the tables. Those

for the products involving R and T will be specified presently.

The values for the directly transmitted light change into those

for the direct light as b --> 0.

o'.
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We now return to the consideration of homogeneous atmospheres

with isotropic scattering, in which the albedo a and the optical

thickness b are the only parameters appearing in the external

relations beside the cosines /_ o and/_ . Under this assumption

the familiar way of expressing both R and T and their various

integrals listed in Tables 1 to 4 is by means of two functions

X(p) and Y_) and their moments

For a definition of these functions we may use

NR = RN =

_]T = TN =

For detailed derivations we refer to the literature.
!

be shown that

It may
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R _

T a

UT = Tt.T. -

,. _.!oy_--(1-_

_.v"l_.,_= _v = _'e,- L

T,YI'N = I',,_'U _ _0
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NRN _

4

,_/u. = _ _'-I

This integral is the non-divergent part of _(_' _.

STS = % __ I

Finally, the fractions of the incident flux which are absorbed

inside the atmosphere follow by subtracting from 1 tho sum of

the fluxes emerging at top and bottom. The results are given in

Table 5.

Table S. Absorbed Fract_ion of Incident Flux

incident from

one direction

narrow source layer

Lambert surface

abs0rb..ed fraction of .incident fl.ux .._

1 - URN - UTN - 2 - o_o- _o

For comparison, it may be noted that the result for a narrow source

layer may also be written in the form

which is equal to the expression given in virtue of the identity
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Chandrasekhar has chosen these non-linear equations as the

defining equations of X(_ ) and Y(_ )° This choice was somewhat

unfortunate, because the existence of a unique solution (for a_l)

is not obvious, although numerically the equations can be used in

an efficient iteration method. A number of papers have been devoted

to this uniqueness problem and it can be considered solved now

(see Bushridge's book). In the conservative case a - I the solutions

become undetermined.

These problems are avoided if we use consistently the definitions

of X(_) and Y(_) in terms of NR and I_T. These definitions corres-

pond to very simple physical definitions as fo!lows (van de Hulst

1947)

Place a narrow source layer in front of a plane-

parallel atmosphere. The radiation seen in direction

is thereby multiplied by a factor X(_).

Place a narrow source layer behind a plane-parallel

atmosphere. The radiation seen in direction/_ is

thereby multiplied by a factor Y(_).

Substituting for R and T the expressions from section 5 we

!

obtain the definitions of X(_) and Y(_) in terms of known

matrices|
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which leave no worries about existence or uniqueness, once it has

been established that the matrix C = (1 - aM) -1 exists. The

conservative case is in no way exceptional in this formulation

(except for b = _0 , where a = 1 is at the same time the critical

value and some caution may be required).

Chandrasekhar happened to choose among the various solutions

of the non-linear equations for X(_ ) and Y(_ ) in the conservative

case a"standard" set which does not correspond to the linear

definition given above, or any of its equivalent forms. The following

relations, derived by Chandrasekhar, may be used to obtain the correct

functions from the standard set.

functions i

moments,

The function Q = O(t) was defined and tabulated by Chandrasekhar.
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7. Low Order Scatterinq

The expansion of C in the form

C = i + aM + a2M 2 + a3M 3 + ...

makes it possible to expand any quantity F in which this linear

operator is a factor in a power series in a of the form

F(a) = FO + aF 1 + a2F 2 + a3F3 + o..

We shall call aPFp the term corresponding to p-th order scatter-

ing. In this manner terms o_ different order may be _listinguished in

intensity, flux, source function, or radiation density. The co-

efficients of the power series expansion for the &ource function J

in the standard problem are

Jo Q 0 (assumed absence of embedded light sources)

s= 1 m

Jl = -- PIa 4

Jp = MP-I J1

The total source function accordingly is

-41-



p=l p p=l

S-CS

.The corresponding emergent radiation of order p_l is specified

: by Table 6.

Table _6

emerging radiation of order p_/l

l

......_verage intensity NO
P

reflected

PJ
P

AJp = Jp {0)

tran smi tted

OJ
P

ilux/TF O0
P

e
t

_=:[:_z2(z)J (_)dr
Jo P

It has decided advantage (in connection with numerical checks and

with the discussion of optically thin atmospheres} to know the results

for several orders separately. Only those for the first order and some

.....for the second order can be expressed in terms of the exponential

......integrals,
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the"second order" exponential integrals

(2) _/,'_
zl (x) = El(t) d_!tt

and related functions. We summarize the results which have been de-

rived elsewhere (Van de Hulst 1947, Kourganoff 1953).

Zero Order. Does not occur in reflection. For transmission,

see Table 3 (page 35).

First order. The following con_inations occur (Table 7), with

top values (reflection) and bottom values (transmission) writton

together in each box.

Table7

I

Incidence from

_irection_ 0

Incidence from

_arrow source

layer

Incidence from

Lambert surface

S I--

= jI_-ZpI

4 4fo

i G=_. E 2 (T)4

emerging
intensity

R1

T 1

RIN

TIN

emerging
average
In_enzzty

R'R1

NT 1

NRIN

NTIN

NRIU

NTIU

emerging

f lux/7r

URIN

UTIN



The complete results are collected in Table 8. The reciprocal express-

sions (e.g. NR 1 instead of RIN) can be obtained by simply replacing/_

by /_0 and conversely.

Table 8.

R1 i

T 1 = !

RN=
1

TIN =

R 1 =

T 1 =

ADalytic ExDregsioDs for _irstrorder Scattering.

for/_ _for_ "_-0.
/

diagonal--value s

R 1 _ I -- @"

T1 . v_.__. 4_b_

J

-¢

_, _(_- _

'-- _-_ _(_ _J
,__ _(-,_ _-

0

_o

%

%E2c_ )

NRIN =

NRIt; =

URII; =

l I
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The equation for R 1 is the famous Lommel-Seeliger formula, often

employed in astrophysics about the turn of the century. The other

formulae are given in the notation of Van de Hulst (1947), although

o

the F-functions had been studied as early as 1913 by King. The

notations of Chandrasekhar and Kourganoff are identical, except for

the arguments of the F-functions, which they write (T;_) instead

of (/_ j q" ). The defining equations are

l

r Cs._) = e It)gr
n

•,o rE., _'_._E.

.G_C', = Gm,.¢",=,/, ' /r._Jr
G_m( g ) Gmn ( _ ) / E_/r)

o

E. {,¢'-z3gr

For tables, special values, and further properties we refer _o the

literature.

Second order. Second order scattering generally involves even

more complicated functlons. It would not pay to write complete

formu la e.

Van de Hulst (1947) and Chandrasekhar (1950) have discussed

r . .

formulae which may serve to calculate some further quantltles connectel

-45-
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with the second-order scattering in an approximate fashion. In view

of the availability of numerical tables now being constructed there

is no need to repeat these approximate equations.

The. second-order values of a product containing the factor Z

(grazing incidence or grazing reflection) can be obtained from the

first-order values of the corresponding product containing the factor

N (see next section).

8. Grazinq Anqles

It is obvious that several of the results which we have derived

must be considerably simplified if we specify

or

grazing incidence,
/_O= 0) I=Z

grazing emergence, /_= O; D = Z

we shall now see what simplifications result in this manner. The

resulting formulae are useful in various ways, and it seemed useful to

have them collected in this separate section.
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_ing incidence, _ =0, I = Z
/ / O "

The first-order source function

m

s = = = %aA.

narrow source layer on top of the atmosphere sending a flux

n the form of scattered light of first order and a flux %Fa

the atmosphere. The latter part yields reflection (second

higher) and transmission (first order and higher) by pre-

e same course of events that would have followed illumination

•ow source layer above the atmosphere, I = N.

, be added. Hence we have

Only the factor

a a a_ X(_)

_ssions in terms of X(_) and Y_) follow at once from the

equations of these functions on page 36.

_ing emergence, /_=0 , D = Z. The situation is entirely

The reciprocal form of the same equations is

ZR = _ N + _ ETR = _

a .a
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A formal derivation of the top equations may, for instance, be

obtained by writing identities derived in the preceding sections in

the form

2
mu = NPJ --2_ --aA (J-s)

2-as= %_I= NI
a

ZRI = ZPJ = AJ

Upon combining these and omitting the factor I, the top equation follows.

Another derivation may be obtained from Table 5, where it was shown

that both for absorption and transmission

ZOp = ½NOp_ I
(p_ i)

Observe further that

in reflection: ZOo = o, aZOl = ZPS = _NI

in transmission: ZOo=O, aZO 1 = _Oo.

Multiply the equality by ap and add from p=l to _0 and, after omission

_of the arbitrary incidence vector I, again the same equations result.

z., , .... 7. _" t
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These formulae can be of practical use, both by themselves and

_n providing checks on numerical or analytical results. Some further

"products follow easily:

aURZ = ZRU = a + UP/q = _ 0(o2

UTZ = ZTU = UTN =_

i. -

t. NRZ = ZRN = _0 (diverges)

ZRZ = _0 (diverges)

ZTZ = _ NTN -- l

It may be noted that the divergence of NKZ is caused only by the

divergence of the first-order term I/RIZ (compare Table 7). We can

mingle this term out and thus derive a formula describing the behaviour

_)f X(_ ) near _ = o. After some reduction we find

a a _ _._ _X(/X) - 1 a _ I

....
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3It iS thus found that X'{

at /6_ = o.

llowuver y' (?) = dY(_)

d_ diverges logarithmically

attains a finite limit by the equation

ZTN = - , ° 22
=! X'(0)

2

9. The Method of Successive Order Scattering (Simple Iteration)

Suppose we wish to have the numerical value of the reflected

radiation for a given incident radiation field I, a given de_tor

characteristic D, a given optical thickness, b, and a given albedo

a. The answers may be written in the form

DRI = DP C ¼ a PI =

= (DP) (i + aM + a2M 2 + a3M 3 + .... ) (% a P"I)

On_ obvious way of finding this result is to start with the

"C_vector S = ¼ a PI, multiply with the T r -matrix aM many times

in succession, take the sum, and multiply this sum with the

T'-vector DP. The successive terms can be identified with

SUccessive order scattering, as explained in section 7.

This method has not usually been considered practical, except

fo_ very thin atmospheres, because the number of terms to be taken

is quite large, whereas, for instance, in the non-linear integral

eq_ations for X(_) and Y(_) employed by Chandrasekhar a few
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iterations suffice to give good accuracy. However, performing

many simple operations and sun_ning many terms ks no problem for a

fast computing machine. Some advantages of the simple iteration

method _e that all operations are linear and that the program is

quite flexible, permitting any form for I or D to be put in.

The conservative case (a = O) does not require a special treatment,

nor does the diffuse transmission for/_ =/_o require a separate

formula, as it does in the non-linear method. Finally, general-

ization of the method to arbitrary anisotropic scattering patterns

is relatively simple.

There is only a minor difference between this method and the

iteration method by means of a Neumann series (see Busbridge's

boDk). In that method the equation

J=S +aMJ

is solved by the iteration procedure:

J_,) = S

J_ +i) = s + aMj6p_

lira

J = Jlp+l)
p-_

In the present method we do not compute these successive approxi-

mations but the separate increments

!

i .
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and take the sum later. This incidentally, makes it possible

to put in different values of a .

An important practical modification is that after a certain

term the sum may be replaced by the sum of a geometric series

Using the eiqenvaluess. The integral equation

J = MJ

has a solution only for a discrete set of numbers _ _

(m = 1, 2, 3, ...)0 the elgenvalues7 the solutions are the

corresponding eigenfunctions J<_)(T) • A normalization convention

is required to define them completely. There are no degeneracies

here. Elaborate theories of the properties of eigenfunctions

and of expansions into eigenfunctions exist, both for matrices

M of discrete numbers and for continuous functions. This full

theory does not have to be invoked, for the application to the

present computation is quite simple. If any term of the series

for J can be represented with good accuracy as a linear combina-

tion of two eigenfunctions

aP Jp = aPI. q_ JCi3 + q2 _
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then the next term will be

ZIL<:. ZI_ Y.6>:_ Z_TT

ap+f = a_p+4 MJ = aP +4{ (')q9: _JPel = _:" p .. f J + 9 a)q2 J 1

The numerical value of the term with the lower eigen_value, say

"_;- , thus drops more rapidly than the term with the larger eigen
_ -;..

%-J

value )'),.<. Eventually, there will be a term beyond which we

t "-_7.£[ f

can neglect with good accuracy all but the lowest eigeD__function
C&_ r_eci£.'-- . i;. co.'..

and put Ill

a- jp" , 4-1 = , . p

From this point on we may sum in a geometrical series
_'z<_;- ZhlS .... -O.-. :,.

- = r Jr

'" (lJ

] . ,,

Since a _.I and

the eonservative case

(,)
_ 1 the convergence is assured. Orly

(a = i) for a semi-infinite atmospher(

( _{t: = i) has to be treated as an exception. This is exactly

t_e case which has been thoroughly discussed by Hopf and oth_=rs
t__C case na_ h,

a long time ago. If albedo values a > 1 were permitted, a

"critical" value a = ( _ ) would be reached at which the
"crib! ca! ' ' -- - - -_

radiation in the slab is selfsustained.

critical state of a nuclear reactor.

We have found no values for
• ._ 7We "L?, : --.q,- F;C ., .:£_ =_._ .

This corresponds to the

in the literature, but
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estimated some in an earlier paper (Van de Hulst and Irvine,

; paper at Astrophysical Symposium, Liege, 1962). Some more

' . accurate values now available are presented in Table 9.

The values marked "numerical" in Table 9 have been obtained

(0
; '_*'_'_from the iteration process. Those for _ followed from the way

:, in which the ratios WJp_[/WJp approached their limit _(;J .

_. _ Here W = operator defining integration over 2? from 0 to b. The

; ::_:_ _lues marked "approximate" in Table 9 came from two sets of

formulae derived from small and large b. A horizontal line

'_i meparates the values derived from these two sets.

For_ small b z

_hese formulae follow from ass.uming a simple rectangular source

_t_unction or a function which is i for 0 _T _ ½b and -i for

._ _T_ b and by applying the Milne operator once and taking

; ":_ the integral. The approximation seems quite satisfac,tory for

For large b,

• -.2'
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TABLE 9: Eigenvalues for Isotropic Scattering
- - .

b

0.01

0.02

0.05

0.I

0.2

0.4

0.5

0.8

1.0

2.0

4

8

I0

20

mo

numerical approx.

.0276 •0276

.0484

•0984

•164 .1630

•260

.393

•44734 .443

.555

.61902 .610

•78301 •779

•90213 .899

.964

•97549 .976

.9929

1 1

approx.

.0069

.0338

.066

.126

.231

.306

.449

•691

•871

.909

.972

1

numerical approx.

.0845

-- m .........

.195 _ •005 .164

.345 _ .005 .281

•565 _ •005 .498

.750

.829 _ .002 .816

.939

1 1
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This formula, Which gives^satisfactory approximation for m = i0

b _ 2, has been derived by assuming for J a sine curve

J(_) = sin

7"r( 'c" .-,- _,7o)

._'+/,qo

which has (m - i} zeros inside the atmosphere and would reach zero

outside the atmosphere at l- = -0.70 and Z- ffib + 0.70. The value

0.70 is somewhat ill.defined but not very criticall it can be

estimated either from the theory for a semi-infinite atmosphere

or from numerically computed eigenfunctions. We now combine the

equation

derived on page 172with the equation

c/
ac"

which is a well known approximation valid in any point inside a

thick atmosphere not too close to the surface: These equations are

consistent if we choose for a the critlcal value _ 1 defined by

m

3.. '7...
7l"

This result cannot be expected to be correct, except for very

large values of b. The..formula actually used is equivalent for
u ,

• . ,:- _,

."_ " " ' ':i.'::;'.'-_-56-



large b, but fits the data better for relatively small b.

The eigenvalues in Table 9 can be used for an estimate of the

number of iterations required. One-sided illumination generally

generates a first order source function S(_ ) in which the second

eigenfunction j_2)6r] is represented with a coefficient of order

unity. Hence 6-figure accuracy can be obtained if the iteration

is stopped (and further terms replaced by a geometric series)

when this term has been reduced to 10 -6 , i.e., at the o_der

i

An initially symmetric source distribution gives faster convergence

because jl3_J_-- is the next competing eigenfunction. Some typical

estimates are given in Table i0. These data are not sufficiently

complete for a critical discussion but show the general trend.



TABLE i0 z Number of Iterations Required

"b

A

0.5

1

2

.

10

one-sided illumination

l_) ) empirical r6/(-log

? Ii

12 17

17

38

150

symmetric sour'ce s

6/(-log _ [j)) empirical r

6 5

8 7

13 i0

24 17

75 48
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lO. Addin_ method

By the adding method we shall.understand a method for

computing the reflection and transmission by a layer of optical

b"thickness b = b _ + making use of the known reflection and

transmission by layers of optical thickness b ! and b II .

We shall derive the formulae in two independent ways. In

the first derivation we use the external relations for the two

composing layers and just look how the radiation can get out

of the combined layer. This derivation holds quite generally,

even for inhomogeneous layers and for anisotropic single

scattering diagrams. The second derivation is more formal and

makes use of partitioned matrices, As this derivation uses

the radiation densities and the albedo explicitly, its

validity is confined to homogeneous layers with isotropic

scattering and constant albedo.

Our main aim in discussing the adding method is to apply

it to the case b j )I= b , i.e." in the form of a doublinR method.

I D|
In another extreme we might take either b or b infinitesimal.

This leads to the method applied by Bellmann, Kalaba and

Prestrud and described by them as invariant embeddini$.

For the first derivation we refer to Fig. 2 • In the

prototype diagram I is the incident, R the reflected and T the

transmitted radiation, and J the radiation density (which will

be used only in the second derivation). The R, T, and J,

,nclude all orders of scattering and thus form the exact

solution for the equation of transfer in the single layer, the

!-59-
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Figure 2. The doubling method

(a) proto-type, single layer

b

I f

T °.

(b) double layer

1 R 1 R2 R3

SUmS n = I to oo

R= [R n

I j 2) j3 !
I

J
a' - rJn

II

Jl

I;

J2

u3

D= _Dn

u = _u_

' J" = _- Jn

T 2
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T includes the zero-order term corresponding to direct

i

.....'" transmission. The double-layer diagram consists of a simple

._ succession of these prototype diagrams, namely in the upper

half one right side up and the rest upside down, and in the

i " izm_,er half all right side up. The radiation intensities up

--.... _ d'o_nat the center of the double layer are called U and D.

...... l_k_s refer to the upper layer, double primes to the lower

i-. _:_-_ ._er. Note that the indices n in this method do not signify

_.__.._;_=..-........._TBe=s of ncattering; the meaning of n - i is (in Rn, Tn, J/ n

; and J#n) the number of times a photon has crossed the middle

i .....:_:__ndary going up.

' The recursion formulae can be read from Figure 2 and are

=for incident radiation from one direction

I

RI = R

T = T jj D
I| n

D 1 = T _

Un = R'; Dn

R = T_U
n+ I n

= R I
On + i Un n = I, 2,.

:_: :By addition they give

i:..... D = {I + (R _R

'_" ' U R # O

(R _R" )2 + "''l TI = (I - R _ R _ )-[ T

...... ,R R'J "+ TIR u D

T = T "_D
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I :

These equations are correct and complete but deceivingly

simple. Great care h_s to be exercised in writing them in the

forms of integrals, because the matrix D contains, like T', T''

and T, a singular (diagonal) part besides a diffuse part. Also,

the order of arguments is not Irrelevant in the assymetrlc matrices

D and U. For further explanation we write therefore the same set

of equations in a form in which they can be used for actual

numerical calculation.

Write positive cosines of angles with the normal

for incident radiation at topt /_o

for downward radiation at interface, u, v, w

for upward radiation at interface, z

for emergent radiation at top or bottom, /_

The calculation may then proceed as shown in Table 11.

Let us now turn to the second more formal derivation. We

refer to the book of V. N. Faddeeva "Computational methods of

...... _ lln_a_ algebra" and use a combination of the method of
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TABLE 11= Computation Proqram for ' ,__:"

Matrix form

_: R'R"

O0

= r_'+ b_;//

g _1 i I•, +t_,r_,,)v

II

Functional form

4

QI L'_<>v)_ R' "

Sc,<,,) : _ 67. :,,, >,)
li =l

#

0

, __d/_.o
5:._ e

#

.,7
-63-



:1-i

partitioned matrices (p. 102 - 103) with that of improved

convergence of iteration (p. 127 - 131).

We write vectors and matrices for the double layer

without primes, vectors and matrices for the separate layers

with primes and double primes. The central problem (see section

5) is "to find

when M and a are given.

c : (I - _)-I

]
C

Suppose we know the relations

: (I - aM') -I

= (I - aM")-I

We now partition the matrices for the composite layer and

introduce a new one, G, as follows

I _- M =

0 i M'

(coG :

0 C"

Obviously G can serve as a first approximation to C.

by direct multiplication

G(] sin) = l - H

•_here

amid hence

aC" L c

(I - H)C = G

"-64-
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or

C = (i - H)-IG

Inversion of I - H in partitioned form gives by standard

.°

.i

I
I

procedures

(i - H)"I

and finally,

/(i - a2C JEC'' L)-

L) -i

aC._L(I - a2CI_LCIE)-I I

J(i - a2C l_LCI_) "I

C __

IC' (I - a2CY[C }} L)'IaC_C _

2C , -1C _I(i - a LC_)(i - a2C _I LC_[)-Iac" LC

The method thus followed consists of choosing a trial

solution G which is used to improve the convergence of the

?

iteration. For large values of b (thick layers) and albedo

or close to _, the convergence of the iteration procedure by

successive orders of scattering, i.e. successive multiplication

by aM, is extremely slow. The expectation is that the

iterations involved in the equations just derived, for instance,

(I - a2CJ_CIJL) "I = I + a2CI_C_JL + a4CI_C_)LC_C_}L + ...

- .... :/""-:'"::_.deri_ation (expressed in terms of

converge more rapidly. We shall later confirm this by looking

at the eigen values.

We still have to establish the equivalence between the

results of the second derivation (expressed in terms of _Z "J,

.T_ _ '_ J_ _ and 2_ '_ "._ ,. _ _ , _ matrices) and of the first

matrices). This
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i

equivalence is demonstrated by considering that a geometric

series in which the ratio of successive terms is a product,

say AB, can be written in different ways namely

(I - AB) "I = i + AB +ABAB + ... =

I + A(I ÷ BA + BABA + ...)B = I + A(I - BA) -I B

This transform.ation is trivial if A and B are numbers, but

non-trivial for matrices. Generally A can be a matrix of n rows

and m colu_.,ns and B one of m rows and n columns; then AB is a

square matrix of n x n components and BA a square matrix of

m x m components.

The equivalence is now established as follows. Let us

measure Z"I from the separation layer up in the top layer

to b I _.,t. b 't
and_fovm in the bottom layer to (see Figure 3).

b _

(Figure 3)

We have derived earner that the matrices occurring in the first

derivation can be decon_posed as follows.

and

R !

cf_)

R It

= pn Cl _ p J

I**(/,r') lr'r_) L r /

= p" CDm_ _J
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The matrices L and [ recurring in the second derivation have

the functional form

L = E = %EI(T' +27")

and can also be written as matrix products:

L = _ _"P' E =

We thus find that the general term of the iterative solution

contains continued products as follows

iterative matrix in derivation

R _ R_

• .; ..... _ _,l p, CI a ._ P_ P_aC J! a _; "P j' P_ C a a _; ....

i ) I ,I ! l
L

iterative matrix in derivation 2

The remaining proof consists of simple substitutions. We

generally have

R= PCS

T:To+QCS

where To-- Toi TO_ and, considering the convention of counting

_Jand _J' (Figure 2)2 the partitioned forms are

S= P= Q=

s" _J TgP" \ q"

The partitioned •form of C was found in derivation 2.

-6'7- -p

Performing



the somewhat tedious multiplications we find indeed the same

result as when writing out the formulae of derivation i, namely

R = R' + T'(R" + ...) T' =

= Q'C'a_' + (TO'+ Q'C'a_') (P"C" a¼P" +...) (Tj + P'C'a_Q')

_nd

.......... T = T" (i + ...) T |

= (To" + _" c"a % P")(i + ...)(T_ ÷ P'c' a ¼ Q')

• _+, %_hich follow from the first derivation.

.... 4%igher powers in R" R' or R'R" .

The dots stand for

+ A sample computation was made starting with R(/_,/o) and

Tdii_( _,/0 ) for b = 0.25 obtained by the simple iteration method

and proceeding to find these functions for b = 0.5, I, 2, 4, 8

.........d_nd 16, by the doubling method. Only/_-integrations are involved.

In spite of the fact that a fairly crude integration scheme was

mused, three to four-figure accuracy was obtained.

It is interesting to examine the eigenvalues _(b,a) found

•/_ this computation. For given b and a the ratio of successive

_.._erms in the doubling method approaches a definite limit:

I

+ . _, . + _ +, .+ .+v "._'.,;,
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In all sample computations the ratio came to within one per cent

of this lim/t already at the iteration from Q2 to Q3" This _hows

that the next highest elgenvalue is quite low and that without

loss of accuracy the sum might have been replaced by a geometric

series beyond the third or fourth terms. This is entirely different

from what occurs in the simple iteration procedure.

values O( are much io,_er anyway than the eigenvalues

iteration procedure.

For thick layers the radiation field at the central interface

must be almost Isotropic. Hence we should expect the eigenvalue

to approach the square of

because at both reflections R' and R" this is the fraction of the

flip: thrown back across the interface. Table 12 shows that this

Also, the eigen-

of the simplo

expectation is well fulfi!lod.
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TABLE 12, Eigenvalues in the Doubling Method

_b

0.25

0.5

1

2

4

8

b

0.5

1

2

4

8

16

a=0.8

o< (_u) 2

.0267 .0176

.0520 .0422

a=0.95

O<

.0410

.0892

.0870

.114

.122

.122

.0785 .172

.272

.343

.361

a = 1.00

(uRu) 2

.0472

.1066

.2172

.3838

.4761

.743

.0324

.087

.200



I L°

h

|l, Some Numerical Results

Table 13 (pages 73 to 76) presents some sample pages of a

numerical table which has been 4esigned to give maximum convenience

to the "user". The user may be a physicist, astronomer, geo-

physicist, or other scientist who wishes to make rapid reference

to a particular number or who wishes to employ such a number for

comparison with a more complicated problem he wishes to study.

The headings are in physical rather than mathematical terms, but

the mathematical definitions of the given numbers are:

for reflection (out at top)

for transmission (out at bottom)

DRnI

DRI

DTnl

DTI

(n = I, 2, 3)

(8 values of a)

(n = i, 2, 3, 4)

(8 values of a)

appropriate boxes.

There are eight choices of incident radiation field I,

corresponding to six separate angles of incidence and two

distributed fields, N and U. Similarly there are nine choices

of the "detector" D of the emerging radiation corresponding to the

same eight choices and the grazing emergence, vector Z, /_ = O.

The direct transmission has a singularity if D and I refer to the

same angle. This has been indicated by the word PEAK in the

The DTI values in the col_mns under the word
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PEAK refer to the diffuse transmission only. The DTI values in

all other columns include the direct radiation DToI which has no

slngularity there. The 72 reflection columns and, similarly, the

72 transmission columns are partly redundant. Because of the

reciprocity between I and D twenty-elght columns occur twice and

sixteen columns, namely the eight symmetric combinations and the

eight combinations with D - Z, occur once.

The computations were programmed by M. K. Grossman and carried

i

out at the IBM 7090 of the Institute for Space Studies, New York.

The slmple iteration method (successive scattering) was used.

Abundant internal checks on the accuracy are provided by the

required equality of the twenty-eight reciprocal products. Generally0

the present integration2which was carried out with steps 0.01 in _-_

gave an accuracy of about four units in the fifth decimal. Only

the functions involving the directions /_o = 0.i or _ = 0.I

gave differenc_up to twenty-six units in the fifth decimal.

This may be remedied, if desired, by a finer integration mesh.

Additional internal checks are available between the products with

vector Z and those with _ctor N (section 8).

The functions X(_) and Y(_) and their moments of order

-I, 0 and 1 are implicitly contained in these tables in various

com_inations {page 36-38)° The checks against other published
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|SOIROPIC SCATIERING FINITE LAYER TABLE 13

INTENSIT|ES OUI AI TOP

nU=O NU=0.I MU-0.3 NU=0.5

VECTOR Z

U= 1.0 NARROW SOURCE LAYER AT TOP

NU=0.7

FOR EXPLANATION SEE PAGE 71-7Z

NU-O.9 MU-I.O &VERAGE FLUX

N U

FIRST OROER 00.00000 0.59997 0.36529 0.27050 0.21553 0.17924

SECOND ORDER 0.17135 0.18265 0.15384 0.L2_61 0.10728 0.092t6

IHIRD ORDER 0.06614 0.08188 0.08018 G.07022 0.06075 0.05301

SUMS A= 0.20 20.00745 0.[2803 0.07994 0.05983 0.04795 0.04002

A= 0.40 40.03279 0.27591 0.17741 0.13447 0. I0_49 0.0909l

A= 0.60 60.08283 0.45217.0.30116 0.2317_ 0.13_45 0.15558
A= 0.80 80.17015 0.67279 0.4o802 0.3_662 0.3C116 0.25506

A= 0.90 90.23523 O.8092[ 0.57777 0.45777 0,377_4 0.32117

A= 0.95 95.27543 0.88591 0.642_ 0.5120_ 0.42_03 0.36099

A= 0.99 99.3|22_ 0.95486 0.70021 0.5_G_0 0.4_569 0.39706

A= 1.00 00.32216 0.97277 0.71562 0.57399 0._7687 O._0675

B = 1.0 MUNOUGHT _ D.I

FIRST ORDER 2.50000 1.25004 0.62500 0._1667 0.31250 0.25000

SECOND ORDER 0.2999_ 0.29983 0.21173 0.1620| 0. i3085 0.[_61

THIRD ORDER 0.09133 0.10912 0.09618 0.08046 0.06802 0.05855

SUMS A= 0.20 0.51280 0.26297 0.13433 0.09054 0.0o835 0.05491

A= 0.40 1.05518 G.55667 0.29174 0.[992_ 0.15L60 0.12243

A= 0.60 L.63566 0.69156 0.48220 0.33_76 C.25716 0.20901

A= 0.80 2.26913 1.28628 0.72430 0.51351 0.39938 0.32716

A= 0.90 2.61418 1.51671 0.87573 0.62897 0.49284 0.40565

A= 0.95 2.79632 1.64343 0.96246 0.69631 0.54789 0.&5216

A= 0.99 2.94770 1.75!66 1.03_55 0.75610 0.59706 0._9385

A= 1.00 2.98644 1.77980 1.05865 0.77200 0.61018 0.50500

6= l.O MUNOUGHT = 0.3

FIRST ORDER 0.83333 0.62500 0._t61_ 0.31099 0.24766 0.20589

SECOND ORDER 0.18265 0.21158 0.18079 0.14907 U.12503 0.10712

THIRD ORDER 0.07690 0.09612 0.09380 0.0617_ 0.07051 0.06142

SUMS A = 0.20 0.17466 0.13433 0.09131 0.06890 0.05521 0.04602

A= 0.40 0.34881 0.29171 0.20317 0.155C_ 0.12508 0. I0467

A= 0.60 0.59034 0.482_2 0.34579 0.26763 0.21749 0.182a7

A= 0,80 0.85386 0.7261& 0.53865 0.42408 0.34765 0._9417

A= 0.90 1.00998 0.8755_ 0._6568 0.52945 O.&3&b6 0.37352

A= 0.95 1.09680 O.9_220 0.7405_ 0.59230 0.46_95 O._lbS0

A= 0.99 1.|7157 1.03025 0._07_3 0.64887 0.5381[ 0.65814

A= 1.00 1.17111 1.05834 0.82527 0.66403 0.55104 0._6_33

8= l.O HUNOUGHT = 0.5

FIRS_ ORDER 0.50000 0.4t667 0.31099 0.245_Z 0.20158

SECOND ORDER 0.13525 0.I_188 0.14_06 0.12719 0.10561

THIRD ORDER 0.06369 O.O_04I 0.0817_ 0.07259 0.06321

SUMS A= 0.20 0.10598 0.09053 0.06_90 0.05483 0.04523

A= 0.40 0.22639 0,19922 0.15509 0.12463 0. IC334

A= 0.60 0.36952 0.33469 0.24763 0.2:756 O.[EI&9

A= 0.80 0,54671 0.51337 0.42407 0.349_7 0.19371

A= 0.90 0.65598 0.62877 0.52944 0.43998 0._7121

A = 0.95 0._I819 0.69609 0.5_28 0.494_6 0.41_04

A= 0.99 0.77262 0.755@50.b&_85 0,54_02 0._6C55

A = I.O0 0.78697 0.97173 0.6640[ 0._5665 0._7/98

; k

0.16534 0.34270 0.24458

0.0860I 0.13227 O.113_0

0.04975 0,0E877 0,062_4

0.03696 0.07445 0.05404

0.0840_ 0.16398 0.12133

0.1_706 0,276[| 0.2C857

0.23684 0.42538 0.33028

0.29859 0.52273 0.41198

O.335_3 0.579_b 0.46072

0.3695_ 0.63080 0.50460

0.37866 0.6_437 0,51635

0.22727 0.59997 0.38016

0.10135 0.162o6 0.14,75

0.05468 0.08192 0.07181

0.05000 0.12803 0.08247

O.lll70 0.27592 0.18[17

0.19115 0.45219 0.303d_

0.30009 0.67283 0.465[5

0.37276 0.80928 0.56917

0.41591 0.88699 0.62979
0.45464 0.95_96 0.68359

0.46500 0.97287 0.69789

0.18978 0.36529 0.27_21

0.09987 0.15379 0.13290

0.05760 O.OaOl? 0.07307

0.04248 0.0799_ O.Oblb2

0.09675 0,17740 0.13_o7

0.16933 0.30114 0.23927

0.27297 0.40798 0.37916

0.34423 0.57772 0._7352

0.38721 0.64233 0.52956

0.42617 0.700_ 0.56030

0._3664 0.71555 0.59387

0.17062

0.09406

0.05537

0.03839

0.0_7C8

0.;5506

0.25203

0.31932

0.36308

0.39714

0._0712

0.15837 0.27050 0.21947

0.06803 0.1273_ 0.11364

0.05203 0.07021 0.06500

0.03567 0.05983 0.04903

0.08183 0.13&_7 O.1114&

0.I_42 0,23173 0.19_57

0.23510 0.36678 0.31270

0.29514 0.45773 0.39366

0.33636 0.51199 0.44239

0.371_3 0.560_ 0.q5650

0.38049 0.57393 0.49836
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ISDTROPIC SCATTERING FINITE LAYER TABLE 13

INTENSITIES OUT AT TOP

MU-O NU-O,| MU=O,3 NU=0,5
VECTOR Z

MU-O.7

FOR EXPLANATION SEE PAGE 71-7_

MU=O.9 MU=|,O AVERAGE FLUX
N U

r- . -

! "_--o,.,r _

k

B= l,O MUNOUGHT = O,T

FIRST ORDER
SECOND ORDER
IHIRD ORDER

SUMS A- 0.20
A= 0.40
A= 0.60
A= 0.80

A= 0.90
A= 0.95
A= 0.99
A= l.OO

0.35714 0.31250 0.24786 0.20158 0.16832 0.14392 0.13409 0.21553 0.18048
0.10777 0.13074 0.12502 0.10_61 0.09361 0.08152 0.07644 0.10725 0.09718
0,0536_ 0,06797 0,07050 0,06321 0,05531 0,04_59 0,04571 0,06074 0,05666

0.07622 0.06834 0,05521 0,04523 0,037ql 0,03249 0.03029 0,04795 0,04050
0.16_55 0.15158 0.12507 0.10334 0.08698 0,07473 0.06974 0,10848 0,09252
0,27082 0,25713 0.21749 0,[8149 0.15351 0,13227 0,12357 0,18844 0,1&250
0,_0617 0,39926 0,3478_ 0,29371 0,24989 0,2160S 0,20210 0,30113 0.26305

0.49149 0.49268 0.43664 0.37121 0.31689 0.27451 0.25696 0.37791 0.33251
0,54068 0,_4769 0,48993 0,41804 0.35751 0,31003 0.2_032 0,423_9 0.37450
0.58406 0.59684 0.53809 0.46054 0.3_446 0.34237 0.32070 0,46564 0.41262
0.59555 0.60995 0,55102 0.47198 0.40441 0.35109 0.32889 0.47682 0.42287

B= 1.0

FIRST ORDER
SECOND ORDER
THIRD ORDER

SUMS A= 0.20
A- 0.40
A= 0.60
A- 0.80

A= 0.90
A= 0.95
A= 0.99
A= 1.00

MUNOUGHT = 0.9

0.27778 0.25000 0.20589 0.17052 0.14392 0.12384 0.11564 0.17924 0.15293
0.08962 O.LOg52 0.107|2 0.0_406 0.08152 0.07123 0.06687 0.09214 0.0_425
0,04601 0,05851 0,06141 0,05537 0,04859 0,04276 0,04025 O,OS30l 0,04967

0.05956 0.05491 0.04602 0.03839 0.032_9 0.02801 0.02617 0.04002 0.03441
0.12929 0._2241 0.10467 0.08798 0.07473 0.06455 0.06031 0.09091 O.01885
0,21427 0.20897 0,18287 0.15506 0.13227 0.11455 0.1072| 0.15867 0.13899
0.32424 0.32706 0.29416 0.25202 0.21605 0.|8764 0.17581 0.25504 0.22593

0.39451 0.40S51 0,37050 0,31931 0.27451 0.23881 0.22387 0.32113 0.28629
0.43534 0.45199 0.41648 0.36008 0.31003 0.26994 0,25314 0.36095 0,32287
0,47152 0,49366 0._5812 0,39713 0.34237 0,29831 0.27981 0,39701 0,35611
0,48113 0,50_80 0,46932 0,_0711 0,35_08 0,30596 0.2d70l 0,40670 0,36507

8= 1.0

FIRST ORDER
SECOND ORDER
THIRD ORDER

SUMS A= 0,20
A- 0,40
A= O,60
A= 0,80

A= 0.90
A= 0.95
A= 0.99
A= 1.00

MUNOUGHT = 1,0

0.25000 0.22727 0.18978 0.15837 0.13409 0.11564 0.10808 0,16534 0.14202
0.08267 0.10127 0.09986 0.08303 0._7644 0.06687 0.06281 0.08_99 0.07888
0.04299 0.05464 0.05759 0.05203 0.04571 0.04025 0.03789 0.04974 0.04668

0,05370 0,05000 0.04247 0,03567 0,03029 0,02617 0.02447 0,03596 0.03198
0,11682 0.11168 0.09675 0,0_183 0,06974 0,06037 0,05650 0,08409 0.07338
0.1941i 0.19111 0.16933 0.144_2 0.12357 0.10721 0.10042 0.14703 0.1295|
0.29473 0.30000 0.27296 0.23510 0.20210 0.17581 0.16482 0.23682 0.2108_

0,35935 0,37263 0.34_22 0,29813 0.25696 0,22387 0.20999 0,29856 0.26740
0.39700 0.41575 0.3_720 0.33636 0.29031 O.253[4 0.23751 0.335r9 0.30171
0,43042 0.454_7 O._2615 0,37112 0,32070 0.27981 O,26260 O.3o954 0,3329|
0.43931 0.46482 0._3662 0.}8049 0,32889 0,2d701 0.26937 0.37862 0,34131

8=' 1.D

FIRST ORDER
._COND ORDER
%HJRD ORDER•

SUMS A= 0.20
&= 0.40

A= 0.bO
&= 0.80

_= 0.90
A- 0.95

A= 0.99
• A" 1.00

LAMBERT SURFACE ON TOP

0.50000 0.38016 0.27821 0.21947 0.18048 0,15293 0.14202 0.24458 0.19673
0,12229 0.14466 O.13291 0.1i36> 0,09719 0.08426 0.07889 0.113_8 0.10162
0.05694 0.01176 0.07307 0.06500 0,05666 0.04967 0.04669 0.06284 0.05823

0,10540 0.08247 0,06162 0,04903 0,04050 0,03441 0.03198 0,05404 0,04394
0.22427 0.18115 0,13867 0.11145 0.00252 0,076_5 0.07338 0.12133 0.0_986
0.36206 0.30378 0.23927 0.19_57 0.16251 0.13099 0.12951 0.20886 0.17432
0.53210 0.46505 0.37916 0.31271 0,26306 0.22594 0.21085 0.33026 0.26017

0.63538 0.56902 0.47342 0.39367 0.33253 0.28630 0.26742 0.41196 0.35273
0.6938_ 0.62962 0.52967 0.44240 0.37452 0.322_8 0.30172 0.46069 0.39042
0.74476 0,683_O 0.58031 0,48652 0.41264 0.35613 0.33292 0,50456 0.4359_
0,75816 0,697.69 0,59388 0,49838 0,_2290 0,36509 0,34133 0,51632 0,44661

,.
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|SOTROPIC SCATTERING FINITE LAYER
iNTENSITIES OUT AT BOTTOM

TABLE f3

MU=O
VECTOR Z

NU-O.1 MU=0.3 MU=0.S

B= 1.0 NAKROM SOURCE LAYER
ZERO ORDER O. 0.00023
FIRST ORDER 0,05485 0.05666
SECONO GRDER 0.05183 0.06591
THIRD ORDER 0.03917 0.05024

SUMS A- 0.20 0.01341 0.01666
A= 0.40 0.03366 0.04184
A= O,60 0.06570 0.08208
A= 0.80 0,11966 0.15044

A= 0.90 0.16133 0.20347
A- 0.95 0.18794 0.23740
A= 0.9") 0.21290 0,26926
A= 1.00 0.2197_ 0.27800

8= 1.0 MUNOUGHT = 0.1
ZERO ORDER O. Peak
FIRST ORDER 0.00011 0.00113
SECOND ORDER O.03333 0.04115
IHIRD ORDER 0.03297 0.04203

SUMS A= 0.20 "0.00167 0.00227
A= 0,40 0.00837 0.01086
A- 0.60 0.02663 0.03157
A= 0°80 0.06020 0.07689

A= 0.90 0.09160 0.I1697
A= 0.95 0.11281 0.14408
A- 0,99 0.13334 0.17033
A- 1.00 0.13906 0.17764

b= 1.0 MUNOUGHT - 0.3
tEED ORDER O, O.
FIRS{ ORDER 0.02973 0.04454
SECOND ORDER 0,05174 0.06630
THIRD ORDER 0,0_273 0.05490

SUMS A= 0.20 0.00841 0,01207
A" 0.40 0,02395 0.03328
A= 0.60 0.05210 0.07069
A- 0,80 0,10434 O,13903

A- 0.90 O,14683 0.19424
A- 0.95 0,17458 0.23020
A- 0.99 0.20093 0.26430

A- 1.00 0.20819 0,27369

8= 1.0 MUNOUGHT - 0.5
ZERO ORDER O. O.
FIRST ORDER O.Ob7b? 0.08456
SECOND ORDER 0,05948 0.07616
THIRD ORDER 0.04339 0,05575

SUMS A= 0,20 0.01631 0.02047
A- 0,40 0.04037 0.05087
A= 0.60 0,07751 0.09807
A= 0,80 0,13874 0.17619

A= 0.90 0.18533 O,23577
A" 0.95 0.21487 0.27359
A= 0.99 0.24246 0.30893

A= 1.00 0.25000 0.31069

AT TOP
0_05946 0.13534
O.[O_4g 0.1|897
0,08547 0.08679
0,06031 0,05830

0.08413 0.16314

0.11975 0,20183
0.17368 0,25839
0.26085 0.34686

0.32632 0.61186
0.36756 0,45238
0.40594 0.48986
0._L640 0,50004

D, 0,
0.04454 0,08456
0.06635 0.07622
0,05494 0.05579

0.01207 0.02048
0.03329 0.05088
0.07072 0.09810
0.13910 0.17627

0.194_5 0.23569
0.23033 0.27373
0.26445 0.30910
0.2738_ 0,31676

Peak o.
0.09909 0,12458
0.09218 o.0961_
0.06750 0.06592

0.024!3 0.02937
0.06026 0.07090
0.11672 0.13254
0.21050 0.23034

0.28215 0,30288
0.32764 0.34830
0.37016 0.39041
0.38179 0.40188

O. Peak
o.1248_ 0.13534
o.o961z o.o95_9
0.06592 0.06306

0.02937 0.0314_
0.07090 0.07483
0.13254 0.13758
0.23034 0.23475

0,30287 0.30563
0.34829 0.34967
0.39040 0,39030
0.40186 0,40133

75

NU=O.I

FOR EXPLANATION SEE PAGE 71 °TZ

MU=0.9 MU=I.0 AVERAGE FLUX
N U

0.17118 0.18288 O,18394
0,I181_ 0.11176 0,13793
0.08097 0.07387 0.07043
0,05300 0.04762 0,04516

0,19853 0.20863 0.20876
0.23594 0.24348 0.24225
0.23968 0.29306 0.28972
0,37234 0.35860 0.36178

0.43238 0.42308 0.41363
0.46960 0.45674 0.44563
0.50391 0,48770 0.47506
0,51321 0,49610 0,48302

O. O. O.
0.09984 0.10286 0.10218
0.07539 0.07108 0.06856
0.05200 0.04741 0.04519

0.02346 0.02385 0.02359
0.05649 0.05O60 0.05573
0.10540 0.10392 0.10179

0.18294 0.17727 0,17262

0.24049 0.23086 0.22_11
0.27655 0.26420 0,25606
0.31000 0.29499 0.28552
0.31911 0.30336 3.29351

O. O, O.
0.12749 0.12230 0.11864
0.09057 0.08322 0.07951
0.06022 0.05425 0.05149

0,02968 0.02829"0.02738
0,07068 0.066a9 0.06459
0,130_7 0.12222 0.11770
0.22259 0.20714 0.19889

0.29014 0.26872 0.25758
0.33215 0.30685 0.29386
0.37095 0.34199 0.32729
0.38148 0.35152 0.33635

O, O, O,
0,13039 0.12116 0.11627
0,08003 0,07973 0.07583
0,05701 0.05106 0.04836

0.03012 0.02789 0.02673
0.07112 0,06559 0.06277
0.12973 0.11909 0.11380
0.21939 0.20037 0.191|2

0.28424 0.25C86 0,24667
0.32435 0.29495 0.28091
0.36128 0,32813 0,31237
0°37129 0,33712 0.32089

0.10969 0,14850

0.10366 0,11225
0.07833 0,079_7
0,05366 0,05283

0.13405 0.17461
0.16832 0.21065
0.21898 0.26292
0.29914 0.3_410

0.35851 0.40345
0,39567 0,44036
0,43011 0.47445
0.43949 0.48371

O.00023 O.00005
0.06666 0,05755
0.06594 0,07159
0.05027 O,0SL03

0.01666 0.02089
0.04185 0.05095
0.03211 0.09649
0.15049 0,17029

0,20355 0,22585
0.23749 0,26090
0.26937 0,29355
0.27811 0,302_6

0,05946 3,03567
0,1034, ",11850
0.085 ,08827
0.060_..05981

0.08413 _.06345
0.11975 J.10235
0.17368 0.15_54
0.26084 0.24952

0.32630 0,31588
0.36754 0,35732
0,40591 0.39569
0.41638 0._0612

0.13534 0.13534
0.11897 0.12555
0.08678 0.08696
0.05829 0,05702

0.16314 0.16445
0.20183 0.20436
0.25838 0.26163
0,34584 0,35042

0,41184 0.41483
0.45?35 0.45478
0.48_82 0.49161
0.50001 0.50161



ISOTRDPIC SCATTERING FINITE LAYER
INTENSITIES OUT AT BOTTOM

TABLE 13

MU=O
VECTOR Z

MU=O.[ MU=0.3 MU=0.5 MU=O.T

FOR EXPLANATION SEE PAGE 7{-'/Z

MU=0.9 MU=Z.O AVERAGE FLUX
N U

B" 1-0 HUNOUGHT = O.T
ZERO OROER O. O.
FIRST ORDER 0.08559 0.09986
SECOND ORDER 0.05907 0.07533
THIRD ORDER 0.06048 0.05196

o. o. Peak
0.12749 0.13039 0.12227
0.09067 0.08803 0.08026
0.06021 0.05701 0.05128

SUMS A= 0.20
A- 0.40
A- 0.60
A- 0.80

0.01985 0.02366
0.06719 0,056A8
0.08690 0.10536
0.16893 0.18286

0.02968 0.03012 0.02813
0.07068 0.07112 0.06613
0.13017 0.12973 0.12001

0.22258 0.21939 0.20177

A= 0.90
A= 0.95
A= 0.99
A= 1.00

0.19456 0.24038
0.22305 0.27661
0.26942 0.30986
0.25659 0.31896

0.29013 0.28424 0.26057
0_33214 0.32435 0.29683
0.37093 0.36127 0.33016
0,38141 0.37128 0.33919

Be 1.0 MUNOUGHT = 0,9
ZERO ORDER O. O_
FIRST ORDER 0.09144 0.10286
SECOND ORDER 0.05588 0.07102
THIRD ORDER 0.03693 0.04737

O. O. O.
0.12230 0.12116 0.111g3
0.08321 0.07973 0.07221
0.05425 0.05105 0.04578

0.02829 0.02789 0.02569
0.06688 0.06559 0.06023
0.12221 0.11909 0.10898
0.20713 0.20037 0.18260

0.26870 0.25886 0.23536
0.30664 0.29495 0.26786
0.34197 0.32812 0.29160
0.35150 0.33711 0.30574

SUMS A= Q.20
A= 0.60
A= 0.60
A- 0.80

0.02086 0.02385
0.06870 0.05659
0.08792 0.10389
0.16743 0.17719

A= 0.90
A- 0.95
A= 0.99
A= 1.00

0.19037 0.23076
0.21694 0.26407
0.24140 0.29485
0.26803 0.30321

B= l.O MUNOUGHT = 1.0
ZERO ORDER O. O.
FIRST ORDER 0.09197 0.10218
SECOND ORDER 0.05397 0.06851
THIRD ORDER 0.03521 0.04516

O. O. 0.
0.11864 0.11627 0.10686
0.07950 0.07583 0.06852
0.05149 0.04836 0.04332

SUMS A= 0.20
A= 0.60
A= 0.60
A= O. 80

0.02088 0.02359
0.04845 0.0557[
0.08691 0.10176
0.14471 0.17255

0.02738 0.02673
0.G6459 0.06277
0.11770 0.11380
0.19888 0.19112

0.02451
0.05740
0.10375

0.17361

A= 0.90
A= 0.95
A= 0.99
A- 1.00

0.18612 0.22401
0.21166 0.25594
0.23513 0.28538
0.24149 0.29337

0.25757 0.24667
0.29387 0.26091
0.32728 0.3[237
0.33634 0.32089

0.22362
0.25440
0.28263
0.29028

B= I.O LAMBERT SURFACE ON TOP
ZERO OROER O. 0.00005 0.03567 0.1353_
FIRST ORDER 0.07625 0.08755 0.11850 0.12555
SECOND ORDER 0.05612 0.07154 0.06327 0.08697
THIRD ORDER 0.03973 0.05100 0.05981 0.05702

0.23965
0.11982
0.07986

0.05148

SUMS A= 0.20 0.01746 0.02089 0.06365 0.16465 0.26728
A= 0.60 0.04213 0.05096 0.10235 0.20636 0.30477
A- 0.60 0.07888 0.09666 0.15954 0.26184 0.35816

A= 0,80 0.13763 0.I7022 0.26952 0.35063 0.43959

A= 0.90 0.18154 0.22574 0.31587 0.41484 0.49834
A= 0.95 0.20916 0.26078 0.35732 0.45479 0.53465
A= 0.99 0.23684 0.29341 0.39568 0.49162 0.56805
A= 1.00 0.26186 0.30231 0.40612 0.50162 0.57710

76

O, O. 0.17118 0.23965
0.11193 0.10686 0.I1816 0.11982
0.07221 0.06852 0.06095 0.07987
0.06578 0.04332 0.05299 0.05147

0.02569 0.02451
0.06023 0.05740
0. L0898 0.10375
0.18260 0.17361

0.23536 0.22362
0.26786 0.25440
0.29766 0.26264
0.30574 0.29028

Peak o.
0.10160 0.09672
0.06475 0.06136
0.04080 0.03858

0.02328 0.02215
0.054480.05179
0.09836 0.09363
0.16438 0.15601

0.21158 0.20069
0.240_0 0.22816
0.26723 0.25335
0.27443 0.26017

o. Peak
0.09672 o.o9197
0.06136 0.05812
0.03858 0.03647

0.0221S 0.02105
0.05L79 0.04920
0.09343 0.08868
0.15601 0.14796

0.20069 0.19026
0.22816 0.21624
0.25335 0.24007
0.26017 0.24651

0.32919 0.36788
0.11081 0.10617
0.07221 0.06a63
0.04606 0.06361

0.35467 0.39226
0.38901 0.42505
0.43762 0.47138
0.51128 0.54140

0.56_20 0.59163
0.59682 0.62257

0.62679 0.65098
0.6369| 0.6_867

0.19853 0.26728
0.23593 0.30676
0.28967 0.35816
0.37233 0.4395_

0.43236 0.49833
0,469_7 0.53464
0,503d7 0.56806
0.51318 0,57709

0.18288 0.32919
0.11176 0.11081
0.07365 0.07220
0.04761 0.04605

0.20863 0.35466
0.24348 0.38901
0.29306 0.43762
0.36858 0.51127

0.42305 0.56619
0.6567l 0.59681
0.48767 0.62678
0.69606 0.63490

0.18394 0.36788
0.10793 0.10617
0.07042 0.06862
0.045|5 0.04361

0.20876 0.39226
0.24226 0.42505
0.28971 0.47137
0.36176 0.56140

0.41361 0.59162
0.46561 0.62256
0.47501 0.66096
0.48298 0.65865

0.14850 0.21938
0.11225 0.11624
0.07946 0.07913
0.05282 0.05155

0.17;61 0.24627
0.2L0o5 0.28296
0.26292 0.33555
0.3_409 0.61625

0.40343 0.47475
0.44034 0.51098
0.47442 0.54435
0.48308 0.55361



data by Chandrasekhar e__t a_l., by Mayers, and by Bellman et al.,

(see references) were good to at least four decimals. The

•functions Fn(S, b), Grm_[b) and G_), with n, m = 1 or 2, are

implicitly contained in the lines marked "first order" (Table 8,

page 44).

Finally, in Table 14 we present an excerpt of what happens

to the flux (taken as i000 units) when it strikes the atmosphere

with different angular distributions. The fluxes emerging at top

and bottom may be read from tabulations as just presented. The

remainder, written on the middle lines is what is absorbed inside

the atmosphere (Table 5, page 38).
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TABLE 14 s

b=0.5

_[able of Fluxes (Incident flux = I000)

b=l.0

GRAZ T_HIN LA/IB

Z N U

PERP

/_o- I

105 48 37 25

859 590 489 345

36 362 474 630
, i

353 176 137 93

509 364 303 214

138 460 560 693

638 344 271

78 67 48

284 599 681

185

34

781

687 375 296 203

0 0 0 0

313 625 704 797

0 327 443 607

J

a= 0.2

reflected

absorbed

tran _mi tt ed

a=0.6

reflected

absorbed

transmitted

a = 0.95

reflected

absorbed

tran_mltted

• L.

a=l

reflected

abmorbud

transmittod

any a

directly

transmitted

GRAZ THIN

Z N

105 54 44 32

878 771 710 576

17 175 246 392

363 209 174 130

558 528 490 399

79 263 336 471
,,, , ,,,

694 461 396

97 99 93

209 440 511

302 -

75

623

758 516 447 341

0 0 0 0

242 484 553 659

0 148 219 368
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